

0960-894X(95)00185-9

α -PHENOXYPHENYLACETIC ACID DERIVED ANGIOTENSIN II ANTAGONISTS WITH LOW NANOMOLAR AT₁/AT₂ RECEPTOR SUBTYPE AFFINITY (Part II)¹

Thomas F. Walsh, ** Kenneth J. Fitch, * Raymond S.L. Chang, * Kristie A. Faust, * Tsing-Bau Chen, * Salah D. Kivlighn, * Gloria J. Zingaro, * Victor J. Lotti, * Peter K.S. Siegl, * Arthur A. Patchett, * and William J. Greenlee*

Abstract: Directed synthesis and pharmacological evaluation in a recently described class of α -phenoxyphenylacetic acid bearing angiotensin II (AII) receptor antagonists has afforded further potent AT_1 -selective AII antagonists. Substitution in the central aromatic ring significantly increases AT_2 receptor affinity such that the *n*-propyl derivative **7g** displayed low nanomolar potency at both AT_1 and AT_2 receptor subtypes.

The vasoconstrictive hormone angiotensin II (AII) produced by the renin-angiotensin system (RAS) is a potent regulator of blood pressure homeostasis, fluid volume and electrolyte balance in mammals.² Pharmacological blockade of the RAS cascade with angiotensin converting enzyme (ACE) inhibitors is now firmly established for the management of essential hypertension and the prevention of congestive heart failure.³ In the last several years new orally active, nonpeptidic AII receptor antagonists such as losartan have emerged as alternative and potentially superior agents for lowering blood pressure in hypertensive patients.⁴ We recently described the design of a new series of AII antagonists exemplified by 2 (Figure 1) based upon integrating the α-phenoxyphenylacetic acid element of a weakly active lead (1) found through screening with a 2-propyl-6-methylimidazo[4,5-b]pyridine heterocyclic element which had previously been reported by these laboratories to enhance the potency for another series of AII antagonists.⁵ In this paper we describe efforts to optimize the heterocyclic substituent of the α-phenoxyphenylacetic acid based AII antagonists, as well as further structure-activity relationship (SAR) studies which have afforded highly potent AT₁-selective and low-nanomolar AT₁/AT₂ balanced AII receptor antagonists.

2

Figure 1.

[†]Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065; and [§]Department of Pharmacology, Merck Research Laboratories, West Point, PA 19486

Chemistry. Identification of an effective heterocyclic substituent for α -phenoxyphenylacetic acids was greatly facilitated by the availability of several novel heterocycles which were concurrently under investigation in our laboratories as pharmacophores in other biphenyltetrazole based AII antagonists. Figure 2 illustrates the structures of several of these prototypes (6-8)⁶ which were prepared from either 2-butylbenzimidazole (3),⁷ 2-ethyl-5,7-dimethylimidazo[4,5-b]pyridine (4),⁵ or 2-butyl-6-methylquinazolin-4(3H)-one (5)⁸ and methyl α -(4-bromomethylphenoxy)phenylacetate (11a, R¹-R³ = H) as previously described.¹ Additionally, the imidazo[1,2-b]pyridazine bearing α -phenoxyphenylacetic acid (10) was also prepared from phenol 9⁹ as indicated in Scheme I. Examination of the AII receptor binding affinities for the prototype compounds that are summarized in Table 1¹⁰ prompted the selection of the 2-ethyl-5,7-dimethylimidazo[4,5-b]pyridine 4 as the preferred substituent for subsequent SAR studies in this series.

Figure 2.

 a Reagents: (a) methyl α-bromophenylacetate, $K_{2}CO_{3}$, acetone, reflux, 2 h; (b) NaOH, MeOH, rt, 3 h.

At the outset of our studies we were intrigued by the hydrophobic cyclohexyl substituent present in the screening lead (1) and chose to evaluate the potential contribution of substituents at this position (7d-7w) in the middle aromatic ring of this series. We were also aware from our previous studies that *ortho* substitution in the lower aromatic ring could increase the AT_1 receptor antagonist potency for these compounds, 1 consequently derivatives bearing one or both of these substitutions were of interest. Table 2 lists the structures and All receptor binding affinities for the imidazo[4,5-b]pyridine substituted α -phenoxyphenylacetic acids (7a-w)

Scheme IIa

^aReagents: (a) 4, NaH, DMF, rt, 30 min; (b) add 11a-w, DMF, rt, 2 h; (c) NaOH, MeOH, rt, 3 h.

targeted in this investigation. Compounds **7a-w** were prepared using the generalized method illustrated in Scheme II. The requisite methyl α -(4-bromomethylphenoxy)phenylacetates (**11a-w**) were synthesized by alkylation of various readily available phenols with *ortho*-substituted methyl α -bromophenylacetates as previously described. A representative preparation of alkylating agent **11g** bearing the hydrophobic *n*-propyl substituent at position \mathbb{R}^2 is illustrated in Scheme III.

Scheme IIIa

 a Reagents: (a) allyl bromide, K_{2} CO₃, acetone, 65°C, 2 h; (b) o-dichlorobenzene, 190°C, 3 h; (c) H_{2} (45 psi), 10% Pd/Carbon, EtOH; (d) t-BuMe₂SiCl, Et₃N, DMAP (cat), CH₂Cl₂, rt, 1 h; (e) LiAlH₄, THF, rt, 1 h; (f) (n-Bu)₄NF, THF, rt, 3 h; (g) methyl α-bromophenylacetate, K_{2} CO₃, acetone, 65°C; (h) PBr₃, CCl₄, rt, 30 min.

Results. Examination of the IC₅₀s obtained for compounds 7a-w (Table 2) reveals several trends. A single substitution at the R¹ position in the lower aromatic ring (7b-c) provides AT₁-selective compounds with low nanomolar potency consistent with our earlier findings. Alkyl or chloro substituents at the R² position in the middle aromatic ring (7d-7k) are also potency enhancing towards AT₁ receptors, but these appear to have an even greater influence at the AT₂ subtype. This effect is most striking for the n-propyl substituted derivative 7g which displays a 40-fold improvement in AT₂ potency relative to the unsubstituted derivative 7a, and achieves low nanomolar potency for both receptor subtypes. The contributions of the R¹ and R² substituents are not additive however, as evidenced by the hybrid structures 7q-t which revert to AT₁ selectivity.

We further sought to examine the *in vivo* pharmacological efficacy for one of the imidazo[4,5-b]pyridine substituted α-phenoxyphenylacetic acid AII antagonists. The mono-chloro derivative **7d** (L-159,257) was selected for evaluation based upon its good AT₁ binding affinity (15 nM), and was used in a standard protocol which assesses a test compounds ability to block the pressor effects induced by exogenous AII challenges (0.1 μg/kg i.v.) in conscious normotensive male Sprague-Dawley rats.¹¹ Figure 3 illustrates the time course for inhibition of AII-induced pressor responses following intravenous and oral administration of **7d** at 3 mg/kg. As illustrated in Figure 3, **7d** achieved effective initial inhibition of the pressor response following either route

Table 2. 10303 (IIIVI) for compounds 7a-w.					
Entry	R ¹	R ²	R^3	AT_1	AT_2
7a				29	2000
7 b	Me			6	5200
7 c	Cl			10	15000
7 d		Cl		15	720
7 e		Me		14	940
7 f		Et		12	410
7 g		n-propyl		11	47
7Ď		<i>n</i> -butyl		12	140
7 i		allyľ		20	270
7 j		<i>i</i> -propyl		30	3300
7 k		<i>t</i> -butyl		50	300
71		benzyl		95	800
7 m		acetyl		62	610
7n		benzoyl		120	60
7 o		OMe		170	2900
7 p		OEt		140	1200
7 q	Cl	n-propyl		8	>1000
7r	Me	<i>n</i> -propyl		11	2400
7 s	OMe	n-propyl		9.5	1200
7 t	Me	Cl		3.4	1700
7 u		allyl	Cl	2.2	760
7 v		Cl	Cl	21	9000
7 w		Cl	OMe	16	7800

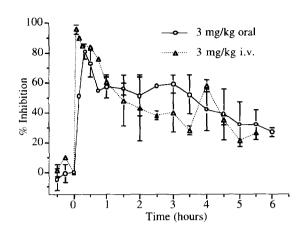


Figure 3. In vivo inhibition of pressor response by 7d.

of administration indicating acceptable oral bioavailability, and it provides sustained functional blockade with a duration of action greater than four hours.

The demonstration of significant improvement in the AT_2 receptor potency in the α -phenoxyphenylacetic acid class of AII antagonists may present potential pharmacological advantages for compounds similar to those described here. We continue our interest in this series of compounds and will communicate our further efforts in due course.

Acknowledgment. We thank Dr. Lawrence Colwell and Mrs. Amy Bernick for FAB-mass spectrometry analysis.

References and Notes

- For Part I see: Fitch, K.J.; Walsh, T.F.; Patchett, A.A.; Chang, R.S.L.; Siegl, P.K.S.; Faust, K.A.; Chen, T.-B.; Lotti, V.J.; Kivlighn, S.D.; Zingaro, G.J.; Greenlee, W.J. Bioorg. Med. Chem. Lett. 1995, 5, 155.
- 2. Peach, M.J. Physiol. Rev. 1977, 57, 313.
- 3. Vallotton, M.B. Trends Pharmacol. Sci. 1987, 8, 69.
- Chiu, A.T.; McCall, D.E.; Price, W.A.; Wong, P.C.; Carini, D.J.; Duncia, J.V.; Johnson, A.L.; Wexler, R.R.; Yoo, S.E.; Timmermans, P.B.M.W.M. J. Pharmacol. Ther. 1990, 252, 711.
- 5. Mantlo, N.B.; Chakravarty, P.K.; Ondeyka, D.L.; Siegl, P.K.S.; Chang, R.S.; Lotti, V.J.; Faust, K.A.; Chen, T.-B.; Schorn, T.W.; Sweet, C.S.; Emmert, S.E.; Patchett, A.A.; Greenlee, W.J. J. Med. Chem. 1991, 34, 2919-2922.
- Satisfactory 300 or 400 MHz ¹H-NMR and FAB-mass spectra were recorded for all new compounds.
- Chakravarty, P.K.; Camara, V.J.; Chen, A. 200TH American Chemical Society National Meeting, Washington, DC, August 26-31, 1990, MEDI 90.
- 8. Allen, E.E.; de Laszlo, S.E.; Huang, X.H.; Quagliato, C.S.; Greenlee, W.J.; Chang, R.S.L.; Chen, T.-B.; Faust, K.A.; Lotti, V.J. Bioorg. Med. Chem. Lett. 1993, 3, 1293-1298.
- 9. Walsh, T.F.; Fitch, K.J.; MacCoss, M.; Chang, R.S.L.; Kivlighn, S.D.; Lotti, V.J.; Siegl, P.K.S.; Patchett, A.A.; Greenlee, W.J. Bioorg. Med. Chem. Lett. 1994, 4, 219-222.
- Binding affinities expressed as IC₅₀s's for the compounds in Tables 1 and 2 were determined by their ability to displace the specific binding ligand ¹²⁵I-Sar¹, Ile⁸-AII from rabbit aortic membrane (AT₁) and rat brain membrane in the presence of 5 mM dithiothreitol (AT₂) receptors as described in: Chang, R.S.L.; Siegl, P.K.S.; Clineschmidt, B.V.; Mantlo, N.B.; Chakravarty, P.K.; Greenlee, W.J.; Patchett, A.A.; Lotti, V.J. J. Pharmacol. Exp. Ther. 1992, 262, 133 with the exception that the 0.2% BSA component was ommitted.
- 11. See reference 5, footnote 11.